1. Soit encore, un groupe G est dit libre sur un sous-ensemble S de G si chaque élément de G s'écrit de façon unique comme produit réduit d'éléments de S et d'inverses d'éléments de S (réduit signifiant : sans occurrence d'un sous-produit de la forme x.x?'1). Un tel groupe est unique à isomorphisme près ce qui justifie le qualificatif le dans la définition. En général, on le notera FS ou L(S). Intuitivement, FS est le groupe engendré par S, sans relations entre les éléments de S autres que celles imposées par la structure de groupe.
2. (Mathématiques) Structure algébrique abstraite munie de certaines propriétés mathématiques.
3. En algèbre, un groupe est dit super-résoluble s'il possède une suite normale
4. En mathématiques, un groupe est une des structures algébriques fondamentales de l'algèbre générale. C'est un ensemble muni d'une loi de composition interne associative admettant un élément neutre et, pour chaque élément de l'ensemble, un élément symétrique.