1. La question de la figure de la Terre en lien avec la gravitation universelle apparaît à la fin du XVIIe siècle. Alors que la rotondité de la Terre est connue depuis l'Antiquité et qu'une première évaluation du rayon terrestre a été effectuée par Ératosthène, l'hypothèse d'une Terre ellipsoïdale, aplatie aux pôles en raison de la force centrifuge à l'équateur, est proposée par Huygens et Newton, ce dernier appliquant de plus la loi universelle de la gravitation, théorie nouvellement apparue. Cependant, des mesures géodésiques menées en France semblant contredire cette hypothèse, la question de la forme de la Terre souleva des polémiques où le prestige de chaque nation joua un rôle. La pertinence des lois physiques à adopter était en jeu et opposait Newtoniens en Angleterre aux Cartésiens en France. La question fut définitivement tranchée dans les années 1730 à la suite d'expéditions en Laponie et au Pérou, donnant raison aux Newtoniens.
2. La détermination de la figure de la Terre , autrement dit l'étude de la forme de la surface externe du globe terrestre et de ses dimensions, constitue l'une des tâches classiques de la géodésie. Elle fournit des informations essentielles pour la géophysique et la géodynamique théorique.
3. Pour servir de base aux mesures géodésiques la surface topographique n'est pas appropriée, car elle n'est pas de niveau ; or, la plupart des appareils géodésiques doivent être mis en station, c'est?à-dire se repèrent par rapport à la verticale de l'endroit où l'on effectue les mesures. Or, la verticale du lieu est normale à la surface de niveau en ce point. Comme standard de référence pour étudier la figure de la Terre et le champ de pesanteur on adopte donc un ellipsoïde de révolution auquel on attache la propriété physique d'être une surface équipotentielle pour la pesanteur. Une telle surface de niveau ellipsoïdale est souvent appelée « sphéroïde normal ». Dans cette appellation, on emploie le mot « sphéroïde » au sens restreint d'un ellipsoïde à symétrie axiale ; dans son acception générale, ce mot désigne une figure géométrique vaguement sphérique, et peut s'appliquer tout aussi bien au géoïde envisagé plus bas.