1. En mathématiques, une fonction périodique est une fonction qui lorsqu'elle est appliquée à une variable, reprend la même valeur si on ajoute à cette variable une certaine quantité fixe appelée période. Des exemples de telles fonctions peuvent être obtenus à partir de phénomènes périodiques, comme l'heure indiquée par la petite aiguille d'une horloge, les phases de la lune, etc.
2. En mathématiques, une suite périodique est une suite dont les termes sont obtenus par la répétition d'un même motif d'une ou plusieurs valeurs. La période est alors la taille du plus petit motif dont la répétition engendre la suite. En particulier, les suites constantes sont les suites périodiques de période 1.
3. (Mathématiques) Quantité fixe la plus petite qui puisse s'ajouter à la variable sans changer la valeur de la fonction. [...]
4. En mathématiques, et plus précisément en théorie des nombres, une période est un nombre complexe qui peut s'exprimer comme l'intégrale d'une fonction algébrique sur un domaine algébrique. La somme et le produit de deux périodes sont encore des périodes, donc les périodes forment un anneau commutatif unitaire. Elles forment même une algèbre sur le corps ? des nombres algébriques. Cette notion a été introduite par Maxim Kontsevich et Don Zagier.
|